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1. Introduction 

Sustainable human activities on the lunar surface are planned in the near future, and metal manufacturing 

technology using lunar regolith will be of significant importance. Preliminary numerical simulation must be 

efficient for saving resources and energy. Thus, it is essential to accurately measure the thermophysical 

properties of molten metal oxides, which are major components of lunar regolith. Although the aerodynamic 

levitation (ADL) method is considered potentially applicable, its reliability as a measurement method has not 

been fully established due to the lack of a mathematical model that can quantitatively describe the effect of 

surface deformation and droplet internal flow due to the aerodynamic pressure and shear force from external 

gas flow. To solve these problems, the authors’ research group is trying to develop a mathematical model for 

time-averaged fields and disturbance fields deviated therefrom. The analysis of the latter oscillatory flows has 

been conducted in our previous study1). This study is aiming to develop an efficient prediction procedure for 

the time-averaged flow fields.  

In the ADL method, the location of the droplet is determined so that the total upward aerodynamic force 

is balanced with the droplet weight. The levitation force can be controlled by changing the gas flow rate. Even 

for the constant gas flow rate, the levitation force may change depending on the vertical location of droplets. 

Thus, there are multiple combinations for location and flow rate that satisfy the force balance. To find such 

balanced conditions by numerical simulation, a volume-of-fluid (VOF) can be considered as an appropriate 

method. However, finding many possible conditions of droplet location and gas flow rate requires huge 

computational time. To solve this problem, we apply physics-informed neural networks (PINNs), as recently 

proposed by Raissi et al.2). The PINNs learn the solutions of a partial differential equation (PDE) for a given 

dataset. In the training process for a PINN, a loss function is defined as the mean square error of the predicted 

solutions of the PDE. To evaluate the loss function, the temporal and spatial derivatives of the unknowns are 

calculated by automatic differentiation (AD), which is implemented in the neural network (NN) framework. 

Once a PINN has been trained, the solutions for any time instance can be calculated directly without time 

integration by forward computation by the NN. In addition, the gradient of the solution with respect to the 

input variable can be calculated using AD. The methodologies of the PINN are based on supervised learning; 

nevertheless, it does not require supervisor data, because the supervisor is assigned to the governing equation 

which must equate to zero. Therefore, the PINN is expected to perform well with limited training data. The 

research group of this work applied the PINNs to the liquid film flow problem. The PDE under long-wave 

approximation contains 4th-order spatial derivative and 4th-order nonlinear term with respect to the Laplace 

pressure. Due to this term, some improvements are needed in the training of the PINNs3). 
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2. Problem formulation 

Governing equations 

We consider two-phase flows of incompressible Newtonian fluids of densities 𝜌𝐿, 𝜌𝐺  and viscosities 

𝜇𝐿, 𝜇𝐺 . The subscripts 𝐿 and 𝐺 stand for liquid and gas, respectively. The surface tension of the liquid is 

defined as 𝜎. The flow is governed by the conservation of mass and momentum 
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where 𝑢 and 𝑤 are radial and axial components of the velocity. 𝑝, 𝛼, and 𝜓 are pressure, liquid volume 

fraction, and level-set function, respectively. 𝑛𝑟 , 𝑛𝑧,are radial and axial components of interface normal vector 

and 𝜅 is a curvature of the interface. 𝛿𝑠 is the smoothed delta function, which has a nonzero value only near 

the interface. 𝜌 and 𝜇 are density and viscosity of mixture phase defined as follows: 

𝜌 = 𝛼𝜌𝐿 + (1 − 𝛼)𝜌𝐺 , 

𝜇 = 𝛼𝜇𝐿 + (1 − 𝛼)𝜇𝐺 . 
(2) 

Physics-informed neural networks 

In this study, we have been using simple deep feed-forward NN architectures, as shown in Figure 1. All 

the hidden layers are fully connected dense layers, and all the activation functions are hyperbolic tangents. 

The outputs of the network are selected as velocities 𝑢,𝑤, pressure 𝑝, and level-set function 𝜓. From the 

predicted 𝜓, the liquid fraction 𝛼 is calculated as 

𝛼 =
1

2
[1 − tanh (

𝜓

𝜖
)], (3) 

where 𝜖 is small constant.  

 

Fig.1 Structure of physics-informed neural network used in this study. 
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The loss function for the training is defined as follows: 

𝐽 = 𝐽GE + 𝐽BC + 𝐽VOL, 
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(4) 

where 𝐽GE is the mean squared error (MSE) of the governing equations 𝐹𝑘(𝑟, 𝑧). The component 𝐽BC is the 

MSE of the boundary conditions. The component 𝐽VOL is the loss for the constraint of volume of liquid droplet. 

The NN is trained to minimize the loss function 𝐽 by L-BFGS-B method, which is a quasi-Newton, full-batch 

gradient-based optimization algorithm. 

3. Results

Figure 2 shows the flow field predicted by the trained PINN. The color contour indicates the volume

fraction of liquid, whereas the vectors stand for the velocity. Validity and efficiency of the prediction was 

confirmed by comparison with the solution obtained by the finite volume method. 
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Fig.2 Calculated two-phase flow fields. 
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