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1. Introduction 

It has been more than 15 years since the first series of Marangoni Experiment in Space (MEIS, hereinafter) 

was carried out aboard the International Space Station (ISS, hereinafter)1,2). This space experiment is widely 

known as the first Marangoni-convection experiment on the ISS as well as the first science mission in the Kibo 

Japanese Experiment Module. Marangoni convection (or thermocapillary convection) in a liquid bridge, 

shown in Figure 1(a), is the flow driven by the surface tension difference, which is caused by the temperature 

gradient along the free surface. One of the most important features of this fluid phenomenon is the 

hydrodynamical or hydrothermal-wave instability. As demonstrated by many previous studies3–5), Marangoni 

convection in liquid bridges transitions from an axisymmetric steady state to either a non-axisymmetric 

oscillatory state due to hydrothermal-wave instability (in the case of high Prandtl numbers) or a non-

axisymmetric steady state due to hydrodynamical instability (in the case of low Prandtl numbers) as the 

driving force of convection increases. Our space experiment MEIS focused on the former instability and aimed 

to determine the transition conditions of the flow regime (i.e., steady or oscillatory) of Marangoni convection 

in a liquid bridge of high-Prandtl-number fluid under a wide variety of experimental condition. Additionally, 

it measured the flow and temperature fields to understand the spatiotemporal structure of both steady and 

oscillatory Marangoni convection. 

All the experiments were performed in the Fluid Physics Experiment Facility (FPEF, hereinafter) mounted 

on the Kibo module. This facility was equipped with various instruments such as the particle tracking 

velocimetry (PTV, hereinafter)6,7) and the photochromic dye activation (PDA, hereinafter) method1,8). These 

measurement techniques greatly contributed to the success of the space experiments, with the former being 

primarily used to measure the internal bulk flow and the latter being primarily used to measure the surface 

flow. However, there are somewhat fewer reports on the results of the PDA method compared to those of 
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Figure 1. (a) Schematic diagram of Marangoni convection in a liquid bridge together with gaseous nitrogen 

laser beam for photochromic dye activation method and (b) photochromic dye trace image obtained in the space 

experiment. 

PTV due to the following reasons: (1) PTV was performed in all series of MEIS, whereas PDA method was 

employed in a limited number of series; (2) there are difficulties in the automatic analysis of data acquired by 

the PDA method in MEIS; (3) a shortage of analysis personnel. This study aims to revisit the data of PDA 

method obtained in past MEIS experiments through a new data analysis method, namely deep learning with 

the convolution neural network (CNN, hereinafter). 

2. Photochromic dye activation (PDA) method 

The PDA method is one of the molecular tagging velocimetry techniques originally developed by Popovich 

and Hummel9). In this method, the photochromic dye is dissolved in the working liquid, and the excitation 

light, such as a pulsed ultraviolet laser, is irradiated at the point where the velocity is to be measured. The 

photochromic dye irradiated by the excitation light changes color, and the flow velocity can be obtained by 

tracking the movement of the colored region. Since the activated dye returns to its original color within a short 

period (typically several seconds), the measurement can be repeated. Since the PDA method is a contactless 

velocimetry technique suitable for measuring the flow velocity near a wall or a liquid-gas interface, it has 

sometimes been used to measure the surface velocity of Marangoni convection in a liquid bridge10,11). 

Surface velocity measurements using the PDA method were performed in the second and the third series of 

MEIS (i.e., MEIS-2 and MEIS-3, respectively) out of a total of five series. The diameter of the supporting disks 

was 30 mm for both series. Silicone oils with the typical kinematic viscosities of 5 and 20 cSt, resulting in 

Prandtl numbers of Pr = 67 and 207, were used as the working liquids. The photochromic dye TNSB11–13)—

1,3,3-trimethyl-6’-nitrospiro[indoline-2,2’-chromene]—was dissolved in silicone oils at a concentration of 

0.05% by weight, and a pulsed gaseous nitrogen (GN2, hereinafter) laser beam with a wavelength of 337.1 nm 

and a pulse energy of 300 J was used to activate it. As shown in Figure 1(a), the GN2 laser beam was split into 

two, reflected by a prism, and irradiated two spots on the liquid-bridge surface at the same axial position but 

different azimuthal positions. Figure 1(b) shows an image captured by a CCD camera for the PDA method, 

obtained during MEIS-2, and referred to hereinafter as a photochromic image. As can be seen from this image, 

the irradiated regions appear dark pink or purple against a light pink background. The surface velocity can 

be measured by tracking these colored regions; however, there is an issue because the tracer particles for the 

PTV also appear purple, similar to the photochromic dye traces. In the previous studies1,8), activated 
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photochromic dyes and tracer particles were distinguished manually. However, such manual operations 

require an enormous amount of time for data analysis. Therefore, in this study, the process was automated 

(actually semi-automated) using deep learning with CNN. The details of the analysis procedure are described 

in the next section. 

3. Deep learning Photochromic dye activation (PDA) method 

Before using deep learning, it is necessary to detect candidates of activated photochromic dye on the image. 

In the previous studies1,8), the analysis region was limited to the vicinity of the laser beam irradiation points, 

and activated photochromic dyes were detected only based on brightness levels. In contrast, this study 

employs the following morphological image processing: (1) invert image colors; (2) create a background by 

averaging a time series of inverted images; (3) subtract the background from the inverted images; (4) binarize 

the subtracted images with an appropriate threshold; (5) fill holes (i.e., small black regions); (6) remove 

connected objects (pixels) smaller than a specified area; (7) computes the Euclidean distance transform; (8) 

suppress regional minima using the H-minima transform; (9) separate clustered objects by watershed 

transform. Figures 2(a) and 2(b) show the original photochromic image and the background-subtracted 

photochromic image, respectively. In Figure 2(b), purple rectangles indicate objects detected by the above 

operations. Through morphological image processing, purple (or dark pink) objects can be detected 

automatically not only in the vicinity of the laser beam irradiation points but also in the entire photochromic 

image. Additionally, it becomes possible to detect photochromic dye traces whose color is returning to the 

original after some time has elapsed since the color change. However, it follows from Figure 2 that other 

objects, such as tracer particles and noise, are also detected in addition to the activated photochromic dye 

traces. In order to classify these detected objects into photochromic dyes, tracer particles, and others, deep learning 

with CNN is used. 

The architecture of the CNN used for classification is shown in Figure 3. This network is designed based on 

the VGGNet14) proposed by the Visual Geometry Group at the University of Oxford, which consists of many 

convolutional layers with small filter sizes. The input to this CNN is volume data consisting of five layers. 

The first three layers represent the red, green, and blue components of an image with a size of 49×51 pixels, 

cropped around the objects detected with the aforementioned morphology image processing. The last two 

 

Figure 2. (a) Original and (b) background subtracted and brightness adjusted photochromic dye trace images. 

Purple rectangles in (b) indicate objects detected by the morphological image processing. 
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Figure 3. Architecture of the convolution neural network for classifying the detected objects into photochromic 

dyes, tracer particles, and others. 

layers represent the vertical and horizontal positions of each pixel on the photochromic image. Figures 4(a)–

4(c) show visualizations of input data for photochromic dyes, tracer particles, and others. If the CNN is sufficiently 

optimized, it will output correct classification results for the inputs. In order to optimize the CNN (or to 

determine the weighting coefficients and biases for each layer), it is necessary to prepare a large set of training 

data, as shown in Figure 4. In this study, 300 training data are manually prepared for each category—

photochromic dyes, tracer particles, and others—totaling 900 training data. Such manual operations are only 

performed at the beginning, with subsequent analysis conducted automatically; therefore, it is described as 

“actually semi-automated” in the previous section. Figure 5 shows the training history for each iteration, 

wherein the red line indicates the accuracy of classification (see left vertical axis), and the green line indicates 

the cross-entropy loss (i.e., the indicator of the CNN’s poor performance, see right vertical axis). The algorithm 

known as stochastic gradient descent with momentum15) is used to optimize the CNN, with the batch size and 

the maximum number of epochs set to 15 and 100, respectively. The initial learning rate is set to 1×10−5 and is 

updated (decreased) periodically. Through iterative computation, the classification accuracy increases to 

nearly 100%, while the cross-entropy loss significantly decreases. There results indicate that the CNN used in 

this study is well-optimized for the training data. In the subsequent data analysis, the objects detected by 

morphological image processing are classified into three categories (i.e., photochromic dyes, tracer particles, and 

others), and the surface velocity is obtained by tracking those classified as photochromic dye. 

 

Figure 4. Examples of training data used for optimizing the convolution neural network: (a) photochromic dyes, 

(b) tracer particles, and (c) others. 
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Figure 5. Training history of convolutional neural network: classification accuracy (red line, see left vertical 

axis) and cross-entropy loss (green line, see right vertical axis). 

4. Surface velocity of steady Marangoni convection 

The surface velocity of Marangoni convection in a liquid bridge observed in MEIS-2 is measured using a 

newly developed method. The experimental conditions considered here are as follows: the liquid bridge height 

is H = 15 mm, and the temperature difference between the supporting disks is ∆T = 5.7 K, which results in 

steady Marangoni convection because this ∆T is sufficiently lower than the instability threshold (i.e., 7.5 K). 

The axial component uz of the surface velocity measured with the present method is plotted as a function of 

the axial position z in Figure 6, along with those evaluated using the previous method1,8) and the numerical 

simulation1,8). In the FPEF, the measurement position of the PDA method could be changed by moving the 

laser beam irradiation points along the z direction. However, in the corresponding experiment, the laser beam 

irradiation positions were limited to four points due to time limitations, and therefore, the previous PDA 

method could only measure the velocity at these specific locations. As shown in Figure 6, the newly developed 

method can detect photochrome dye traces that have moved downstream and improves spatial resolution in 

the z direction. The magnitude of uz tends to be slightly larger than the previous measurement and the 

numerical simulation. However, the obtained surface velocities are reasonably consistent each other and show 

the well-known tendency that the magnitude of the surface velocity increases with approaching the warmer 

side, except in the very vicinity of the disk. Additionally, it is confirmed that the azimuthal velocity converges 

to zero, which is characteristic of steady Marangoni convection. These results demonstrate that the data 

analysis developed in this study is effective for application to the PDA method in MEIS. 

 

Figure 6. Axial distributions of the negative z-direction component of the surface velocity obtained by present 

method (red dots), previous method (white circles), and numerical simulation (black line). 
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5. Summary

This study aims to develop a new data analysist technique for the photochromic dye activation method in

space experiments on Marangoni convection in a high-Prandtl-number liquid bridge. To achieve this goal, 

object detection using morphology image processing and data classification using deep learning with 

convolutional neural network are employed. The developed method is applied to the data obtained from the 

past space experiment (i.e., MEIS-2), and the surface velocity of axisymmetric steady Marangoni convection is 

measured. The newly developed method provides reasonable results and improves spatial resolution in the 

axial direction of the liquid bridge. This method is expected to analyze previously untouched data from space 

experiments and enhance understanding of Marangoni convection in a liquid bridge of high-Prandtl-number 

fluid. 
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